If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+1650x-45000=0
a = -15; b = 1650; c = -45000;
Δ = b2-4ac
Δ = 16502-4·(-15)·(-45000)
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1650)-150}{2*-15}=\frac{-1800}{-30} =+60 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1650)+150}{2*-15}=\frac{-1500}{-30} =+50 $
| -7(-9+2x)=175 | | 3x+17=9x-18 | | 0=-140+96t-16t^2 | | 720=2w(w+4)w | | z/18=4.8 | | t/13=2.39 | | 5x+6+4x=30 | | 31=p/46 | | 23=d/18 | | 7w-6w=5 | | v/8=29 | | 6p/5=9 | | (6x-4)-(2x-8)= | | w3=45 | | 4^(x-2)-5=0 | | 13b=3 | | 27x+2+7x+2=180 | | 12-z=8 | | 2=16-4÷c-3 | | 1/4(x-4)+2/5(x-5)=1/5(x2-53) | | 20+(7-1)d=50 | | 2(6x+11)=97 | | 3+2x=5+5x-2 | | 10x-5=7x+11 | | 10x+-5=7x+11 | | 0=2x-12 | | 5^(2x-3)=0.04 | | x(5x-8)=(5x+8x-3 | | 4t+3t+6=4t-14 | | 4(y+5)/2+5y=0 | | (37b-7)-9(4b+2)=-5 | | 3(2x-6)+6(x-5)=3(3-5x)+5x-21 |